3.3.60 \(\int \frac {x^2}{(1-x^2) \sqrt {1+x^4}} \, dx\) [260]

Optimal. Leaf size=70 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}}-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {1+x^4}} \]

[Out]

1/4*arctanh(x*2^(1/2)/(x^4+1)^(1/2))*2^(1/2)-1/4*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arctan(x))*EllipticF
(sin(2*arctan(x)),1/2*2^(1/2))*((x^4+1)/(x^2+1)^2)^(1/2)/(x^4+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {1332, 226, 1713, 212} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}}-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} F\left (2 \text {ArcTan}(x)\left |\frac {1}{2}\right .\right )}{4 \sqrt {x^4+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((1 - x^2)*Sqrt[1 + x^4]),x]

[Out]

ArcTanh[(Sqrt[2]*x)/Sqrt[1 + x^4]]/(2*Sqrt[2]) - ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x],
 1/2])/(4*Sqrt[1 + x^4])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1332

Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[d/(2*d*e), Int[1/Sqrt[a + c*x^
4], x], x] - Dist[d/(2*d*e), Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] &
& NeQ[c*d^2 + a*e^2, 0] && PosQ[c/a] && EqQ[c*d^2 - a*e^2, 0]

Rule 1713

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[A, Subst[Int[1/
(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ
[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (1-x^2\right ) \sqrt {1+x^4}} \, dx &=-\left (\frac {1}{2} \int \frac {1}{\sqrt {1+x^4}} \, dx\right )+\frac {1}{2} \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^4}} \, dx\\ &=-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {1+x^4}}+\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-2 x^2} \, dx,x,\frac {x}{\sqrt {1+x^4}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}}-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {1+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.09, size = 36, normalized size = 0.51 \begin {gather*} \sqrt [4]{-1} \left (F\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )-\Pi \left (i;\left .\sin ^{-1}\left ((-1)^{3/4} x\right )\right |-1\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((1 - x^2)*Sqrt[1 + x^4]),x]

[Out]

(-1)^(1/4)*(EllipticF[I*ArcSinh[(-1)^(1/4)*x], -1] - EllipticPi[I, ArcSin[(-1)^(3/4)*x], -1])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.20, size = 112, normalized size = 1.60

method result size
default \(-\frac {\sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}-\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticPi \left (\left (-1\right )^{\frac {1}{4}} x , -i, -\sqrt {-i}\, \left (-1\right )^{\frac {3}{4}}\right )}{\sqrt {x^{4}+1}}\) \(112\)
elliptic \(-\frac {\sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}-\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticPi \left (\left (-1\right )^{\frac {1}{4}} x , -i, -\sqrt {-i}\, \left (-1\right )^{\frac {3}{4}}\right )}{\sqrt {x^{4}+1}}\) \(112\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-x^2+1)/(x^4+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticF(x*(1/2*2^(1/2)+1/2*I*2^
(1/2)),I)-(-1)^(3/4)*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticPi((-1)^(1/4)*x,-I,(-I)^(1/2)/(-1)^
(1/4))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^2+1)/(x^4+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate(x^2/(sqrt(x^4 + 1)*(x^2 - 1)), x)

________________________________________________________________________________________

Fricas [C] Result contains complex when optimal does not.
time = 0.12, size = 55, normalized size = 0.79 \begin {gather*} \frac {1}{2} i \, \sqrt {i} {\rm ellipticF}\left (\sqrt {i} x, -1\right ) + \frac {1}{8} \, \sqrt {2} \log \left (\frac {x^{4} + 2 \, \sqrt {2} \sqrt {x^{4} + 1} x + 2 \, x^{2} + 1}{x^{4} - 2 \, x^{2} + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^2+1)/(x^4+1)^(1/2),x, algorithm="fricas")

[Out]

1/2*I*sqrt(I)*ellipticF(sqrt(I)*x, -1) + 1/8*sqrt(2)*log((x^4 + 2*sqrt(2)*sqrt(x^4 + 1)*x + 2*x^2 + 1)/(x^4 -
2*x^2 + 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{2}}{x^{2} \sqrt {x^{4} + 1} - \sqrt {x^{4} + 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-x**2+1)/(x**4+1)**(1/2),x)

[Out]

-Integral(x**2/(x**2*sqrt(x**4 + 1) - sqrt(x**4 + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^2+1)/(x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-x^2/(sqrt(x^4 + 1)*(x^2 - 1)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {x^2}{\left (x^2-1\right )\,\sqrt {x^4+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x^2/((x^2 - 1)*(x^4 + 1)^(1/2)),x)

[Out]

-int(x^2/((x^2 - 1)*(x^4 + 1)^(1/2)), x)

________________________________________________________________________________________